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      Abstract
        Hepatic stellate cells (HSC) are the major producers of collagen in the liver and their conversion from resting cells to a prolif-
erating, contractile and fi brogenic phenotype (‘activation’) is a critical step, leading to liver fi brosis characterized by deposition 
of excessive extracellular matrix. Cytokines, growth factors, reactive oxygen and nitrogen species (ROS/RNS), lipid peroxides 
and their products deriving from hepatocytes, Kupffer cells and other cells converge on HSC and infl uence their activation. 
This review focuses on glutathione and thioredoxin pathways, with particular emphasis on their role in HSC. These two systems 
have been shown to act in the metabolism of hydrogen peroxide, control of thiol redox balance and regulation of signalling 
pathways. Particular attention is paid to mitochondria and NADPH oxidase. Detailed knowledge of specifi c signalling, redox 
conditions and apoptotic processes will be of help in devising proper pharmacological treatments for liver fi brosis.  

  Keywords:   Glutathione system ,  hepatic stellate cells (HSC) ,  liver fi brosis ,  mitochondria ,  NADPH oxidase ,  protein kinases , 
 reactive oxygen species (ROS) ,  reactive nitrogen species (RNS) ,  redox regulation ,  thioredoxin system.  
    Abbreviations: 2-AG ,  2-arachidonoyl glycerol; ASK1 ,  apoptosis signal-regulating kinase 1; CYP2E1 ,  alcohol-inducible cytochrome 
P4502E1; DPI ,  diphenylene iodonium; ECM ,  extracellular matrix; EGCG ,  (-)-epigallocatechin-3-gallate; EGF ,  epidermal growth 
factor; Erk ,  extracellular signal-regulated kinase; ET-1 ,  endothelin-1; FGF ,  fi broblast growth factor; γ-GCL ,  γ-glutamyl cysteine ligase; 
GPx ,  glutathione peroxidase; GSH ,  reduced glutathione; GSSG ,  oxidized glutathione; GR ,  glutathione reductase; Grx ,  glutaredoxin; 
GST ,  glutathione transferase; 4-HNE ,  4-hydroxy-2-nonenal; HSC ,  hepatic stellate cells; MAP kinases ,  mitogen activated protein 
kinases; MMP ,  matrix metalloproteinases; MPTP ,  mitochondrial permeability transition pore; NASH ,  non-alcoholic steatohepatitis; 
NF-kB ,  nuclear factor-kB; NO ,  nitric oxide; PDGF ,  platelet-derived growth factor; PKA ,  protein kinase A; PKC ,  protein kinase C; 
Prx ,  peroxiredoxin; RNS ,  reactive nitrogen species; ROS ,  reactive oxygen species; RSNO ,  nitrosothiols; SFK ,  Src family kinases; SOD , 
 superoxide dismutase; TGF-β ,  transforming growth factor-β; TIMP ,  tissue inhibitor of metalloproteinases; TNF-α ,  tumour necrosis 
factor-α;  Trx ,  thioredoxin;  TrxR ,  thioredoxin reductase;  VEGF ,  vascular endothelial growth factor.
     Hepatic stellate cells: Characteristics, 
functions and activation 

 Several chronic diseases affecting the liver, lung, 
nervous system and arteries are characterized by 
increased deposition of collagen, causing tissue fi brosis. 
A common mechanism appears to be involved in the 
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fi brogenetic process and involves initial cell injury, 
leading to infl ammation, phagocyte activation and 
production of a large network of cytokines, growth 
factors, chemoattractants and other active molecules 
eliciting the fi broproliferative response [1]. 

 Hepatic stellate cells (HSC) are relatively undif-
ferentiated pericytes of mesenchymal type located in 
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the space of Disse between sinusoidal endothelial cells 
and hepatocytes [1–6]. HSC were formerly known as 
Ito cells, lipocytes, pericytes, perisynusoidal cells, fat-
storing cells and vitamin A-storing cells. Their major 
specifi c functions include collagen production and 
remodelling of extracellular matrix (ECM), growth 
factor and cytokine production and retinoid storage 
[1–7]. It has been shown that early primary hepato-
cyte cultures may contain up to 10% HSC [8]. 
According to Giampieri et al. [9] there is an average 
of ∼63 HSC per 1000 hepatocytes. 

 HSC have two main phenotypic states: ‘quiescent’ 
and ‘activated’. Activation of HSC indicates the con-
version of resting cells to a proliferating, fi brogenic 
and contractile phenotype and represents the major 
pathway leading to liver fi brosis [2] (Figure 1). Nota-
bly, formation of fi brogenic myofi broblasts occurs in 
various organs from a large spectrum of precursors 
and plays a crucial role in their respective tissues [10]. 
Activation of HSC comprises initiation and perpetu-
ation phases [2]. Initiation results basically from 
paracrine stimulation elicited by all neighbouring 
cells including hepatocytes, sinusoidal endothelium, 
Kupffer cells and platelets [2]. Exposure to lipid 
peroxides and products deriving from damaged hepato-
cytes also contribute to the initiation phase of activa-
tion [2]. Hepatocytes are an important source of 
ROS, essentially produced by cytochrome P450, 
such as the alcohol-inducible cytochrome P450 2E1 
(CYP2E1) [11]. HSC, cultured in the presence of 
CYP2E1-expressing HepG2 cell line (E47 cells), 
therefore undergo activation and increase their col-
lagen formation [11]. However, this increase is pre-
vented by inhibitors of CYP2E1, indicating that 
P450-mediated ROS production by hepatocytes is 
responsible for the stimulation of collagen formation 
by HSC [11]. Hepatocytes are also an effective source 
of fi brogenic lipid peroxides. HSC further stimulate 
collagen synthesis in the presence of E47 cells and 
arachidonic acid/iron, a combination that enhances 
lipid peroxidation [12]. Both necrosis and apoptosis 
of hepatocytes are involved in the fi brogenic response 
[2]. Necrosis depends mostly on lipid peroxidation 
and the associated infl ammatory response [2]. Apoptosis 
Figure 1. Pathways of activation of hepatic stellate cells and cellular events leading to liver fi brosis. Tissue injury involving hepatocytes, 
endothelial cells, Kupffer cells and also neutrophils and lymphocytes gives rise to production of a large array of cytokines, growth factors, 
peroxides and lipid peroxidation products such as 4-hydroxynonenal (4-HNE), all able to stimulate quiescent stellate cells to convert to 
an activated condition. Activation comprises initiation and perpetuation phases. Once activated, HSC set up an autocrine loop, but 
paracrine effects persist. Perpetuation phase of activation is characterized by retinoid loss, proliferation, chemotaxis, contractility, fi brogenesis 
and increased production of extracellular matrix. A resolution phase may take place in activated cells, which can either revert to quiescent 
state or be cleared in an apoptotic process, making this phase critical for regression of fi brosis.
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of hepatocytes stimulates initiation of HSC in 
a Fas-mediated process which is fi brogenic  in vivo  
[13–15]. Reactive aldehydes produced from lipid 
peroxidation, such as 4-hydroxynonenal (4-HNE), 
are also important contributors to activation. Platelets 
are a quite important source of paracrine stimuli 
including PDGF, TGF-β and EGF [16]. Activated 
Kupffer cells play a role in activating HSC, mediated 
by the production of various cytokines, especially 
TGF-β and TNF-α, and also by reactive oxygen and 
nitrogen species [17]. However, nitric oxide can 
antagonize the stimulatory effect of ROS and thus 
decrease HSC proliferation and contractility [18,19]. 
Lastly, lymphocytes, neutrophils and endothelial cells 
are also involved in HSC activation [18]. Leucocytes 
act through cytokine production and neutrophils 
mostly produce ROS/RNS [20]. Injured endothelial 
cells are able to activate TGF-β from latent to profi -
brogenic forms [21]. 

 The perpetuation phase of HSC activation is 
characterized by several phenotypic and functional 
changes. Notably, during perpetuation, in addition to 
paracrine stimuli, autocrine stimuli, including PDGF, 
TGF-β1, FGF and endothelin-1 (ET-1) also markedly 
contribute to the promotion of HSC activation [18] 
(Figure 1). An early event of activation is the loss of the 
perinuclear droplets of retinoids, stored as retinylesters 
and released as retinol after hydrolysis before export 
[7,22]. HSC also undergo proliferation, mostly stim-
ulated by PDGF [23], although other mitogenic factors 
such as FGF, ET-1, thrombin, vascular endothelial 
growth factor and insulin-like growth factor are also 
operative [2,24]. Activated HSC generate fi brosis by 
increasing production of extracellular matrix protein. 
In particular, production of collagen (essentially 
collagen type I) is stimulated by TGF-β of paracrine 
or autocrine origin [25]. Matrix metalloproteinases 
(MMP) are a family of calcium-dependent enzymes 
playing a crucial role in matrix remodelling. They 
can be regulated at different levels, including inacti-
vation by specifi c tissue inhibitors of metalloprotei-
nases (TIMP) produced by activated HSC [26]. As 
a consequence of the inhibition of MMP, reduced 
degradation of the matrix takes place, resulting in 
excessive matrix accumulation. Other features of the 
perpetuation phase of HSC are contractility and 
chemotaxis [2]. 

 After activation, the resolution phase ensues and 
deserves particular attention in view of its potential 
interest in medical treatment of fi brosis and devising 
new anti-fi brotic therapies [27]. In this phase, activated 
HSCs can either revert to the quiescent phenotype or 
be removed by an apoptotic process. 

 HSC play a central role in liver physiology, as they 
convert from resting cells to a proliferating, fi brogenic 
and contractile phenotype, in a process stimulated by 
neighbouring cells and regulated by several signalling 
cascades.   
 Cell signalling by oxidant species 

 HSC are sensitive to a large array of stimuli coming 
from both surrounding cells and an autocrine pro-
duction, including cytokines, growth factors and lipid 
peroxidation end-products. Most of these signalling 
events depend on or are mediated by the action of 
reactive oxygen and nitrogen species (ROS and RNS). 
Although ROS and RNS are potentially responsible 
for the damage infl icted on almost all biological mol-
ecules, it was recently observed that relatively low 
concentrations of oxidants can behave as second mes-
sengers in cell signalling. After interaction with their 
receptors, growth factors and cytokines stimulate 
an intracellular transient increase in ROS [28–34], 
mostly represented by hydrogen peroxide, which acti-
vates specifi c signalling pathways. Important exam-
ples are tumour necrosis factor-α [35], platelet-derived 
growth factor [36], epidermal growth factor [37] and 
insulin [38]. Cellular thiols are critical in sensing and 
coupling redox changes to biochemical pathways 
[30,32,39–41], as they can react with oxidants faster 
than other aminoacids; in addition, most of their 
oxidized states, such as disulphide, can be reversed 
back to thiols [39,42]. 

 In cells, ROS are generated from several enzymatic 
sources, but the most signifi cant producers of oxidants 
are NADPH oxidases and mitochondria. The latter, 
when the scavenging capacity of ROS is exceeded, 
give rise to a continuous fl ow of hydrogen peroxide, 
potentially involved in the pathogenesis of several 
diseases. Mitochondrial production of ROS stimu-
lated by agents such as inhibitors of the respiratory 
chain, leads to cell growth arrest or cell death by 
apoptosis or necrosis [43–46]. For instance, in acti-
vated primary human HSC, the endocannabinoid 
2-arachidonoyl glycerol (2-AG) is a potent inducer of 
mitochondrial ROS production [47]. This may lead 
to the resolution of hepatic fi brosis due to induction 
of cell death [47]. Consequently, continuous produc-
tion of ROS by mitochondria appears to be more 
involved in apoptosis and/or cell cycle arrest than in 
cell proliferation. Conversely, short-lived production 
of ROS by NADPH oxidases is preferentially associ-
ated with physiological signalling processes. There-
fore, mitochondria and NADPH oxidases must be 
regarded as playing potentially distinct roles in their 
production of hydrogen peroxide [44]. However, in 
view of the complexity of the cellular environment, 
signalling of mitochondrial ROS cannot be excluded 
[28,46,48–54], although mitochondrial ROS forma-
tion is not subjected to the strict regulation that 
occurs with NADPH oxidases [54,55]. 

 Nitric oxide (NO) acts as a second messenger by 
activating soluble guanylate cyclase which, in turn, 
catalyses the formation of cyclic GMP, controlling 
multiple signalling events leading to smooth muscle 
relaxation, inhibition of platelet aggregation and cell 
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proliferation [42,56]. However, nitric oxide and its 
derivatives also exert a signalling action through other 
pathways, such as formation of nitrosothiols (RSNO) 
with protein cysteines and nitration of tyrosine resi-
dues. Although nitrosothiols are not formed by direct 
reaction of thiols with NO, there are many indirect 
pathways. NO can react with oxygen, forming nitrogen 
oxides capable of nitrosylating thiols directly. It can 
also react with superoxide anion in a near-diffusion 
controlled reaction to form peroxynitrite (ONOO-), 
a potent oxidizing agent that is a major cause of nitro-
sative stress and may favour apoptosis [19]. Peroxyni-
trite can oxidize thiols and induce tyrosine nitration, 
thereby interfering with cell signalling processes in 
tyrosine kinase/phosphatase systems by preventing 
phosphorylation of tyrosine kinase substrates [19,56]. 
In the liver, all major cell types such as hepatocytes, 
Kupffer cells, endothelial sinusoidal cells and HSC 
can produce nitric oxide [19,57] and upregulation 
of inducible nitric oxide synthase (NOS2) has been 
observed in pathologic conditions [19]. In HSC, 
nitric oxide contrasts the effects of ROS by acting as 
a regulator of contractility, collagen induction and cell 
proliferation, but, in certain conditions, can also rein-
force the action of ROS [19]. 

 ROS, RNS and lipid peroxidation end-products are 
critical regulators of HSC activity and, through spe-
cifi c signalling pathways, play a crucial role in all the 
events to which these cells are subjected, particularly 
proliferation and collagen production.   

 Involvement of glutathione and thioredoxin 
systems in redox signalling 

 The low molecular weight thiol compound glutathi-
one and the small protein thioredoxin play pivotal 
roles in signalling mediated by oxidant species. 
Glutathione and thioredoxin systems both maintain a 
reducing environment in the cell and use NADPH as 
the same upstream source of reducing equivalents 
(Figure 2). Thus, the 2GSH/GSSG and Trx(SH) 2 /
TrxSS ratios do not simply refl ect the thiol redox 
balance of the cell but mainly determine the specifi c 
involvement of these species in well-defi ned signal 
  Figure 2.     Control of thiol redox state by glutathione and thioredoxin systems. In cells, maintenance of thiol balance is mostly controlled 
by thioredoxin and glutathione redox systems. In glutathione system, the small protein glutaredoxin (Grx) also plays an important role. 
Hydrogen peroxide oxidizes glutathione (GSH) and thioredoxin (Trx(SH) 2 ) in reactions mediated by glutathione peroxidase (GPx) and 
peroxiredoxin (Prx), respectively. All thiol intermediates receive electrons from NADPH which, in turn, is maintained reduced by the 
pentose phosphate pathway in the cytosol. By transferring reducing equivalents from NADH to NADP+, membrane-bound enzyme 
transhydrogenase forms NADPH in mitochondria. Further mitochondrial sources of NADPH are glutamate and isocitrate dehydrogenases 
which directly reduce NADP+. NADPH, through glutathione reductase (GR) and thioredoxin reductase (TrxR), reduces glutathione 
(GSSG) and thioredoxin (Trx(S) 2 ), respectively. Thioredoxin and glutaredoxin, in their reduced forms, are able to reduce several protein 
substrates and then play a major role in signalling processes. For most of these enzymes, several isoforms exist, corresponding to diverse 
locations and functions.  
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transduction pathways. However, one major differ-
ence is immediately apparent, as the intracellular con-
centrations of glutathione and thioredoxin 
are in the millimolar and micromolar ranges, respec-
tively [58–60]. The two systems appear to operate 
independently in cell-reducing processes and signalling 
pathways [61,62].  

 Glutathione system 

 Glutathione is the main non-protein thiol in cells, 
playing an essential role in protecting against xenobi-
otics and oxidants [60]. Glutathione, kept reduced by 
glutathione reductase, acts as a substrate for glutathi-
one peroxidase (GPx) [63], glutathione transferase 
(GST) and glutaredoxin. The latter is a 12-kDa pro-
tein, present in both cytosol and mitochondria, and 
interacts with ribonucleotide reductase and a range 
of proteins involved in cell signalling and transcrip-
tion control [64]. Glutaredoxin accepts reducing 
equivalents from glutathione (Figure 2) and comple-
ments the action of thioredoxin in modulating cell 
responses to alterations in cell redox state [65]. For 
instance, suppression of proliferation was observed 
in myocardial H9c2 cells over-expressing Grx and 
treated with PDGF-BB [66]. This effect is due to 
enhanced dephosphorylation of PDGFR-β, depending 
on the retention of activity of low molecular weight 
protein tyrosine phosphatases by increased expression 
of Grx [66]. 

 Glutathione can detoxify many electrophilic com-
pounds in a reaction mediated by the glutathione 
S-transferase enzyme superfamily. These enzymes are 
involved in the metabolism of xenobiotics and some 
also show glutathione peroxidase-like activity with 
organic hydroperoxides [58]. They are present in 
various sub-classes with different substrate specifi city 
[58]. Several isoforms of glutathione S-transferase, 
such as alpha, mu and pi, have been identifi ed in HSC 
associated with signifi cant levels of glutathione [67]. 
Glutathione S-transferase, coupled with GSH, plays 
an important role in detoxifi cation of toxic aldehydes 
deriving from lipid peroxidation. In experimental 
animals, membrane phospholipids undergo lipid 
peroxidation after chronic administration of carbon 
tetrachloride or ethanol or bile duct ligation, generat-
ing several aldehyde end-products responsible for 
liver fi brosis [1,68]. These derivatives, e.g. 4-hydroxy-
2-nonenal (4-HNE), play quite an important role in 
the adaptive response to oxidative stress and are 
included among the signalling species [56]. Glutathi-
one S-transferase can modulate this type of signalling, 
catalysing GSH addition to electrophilic compounds 
such as 4-HNE [56]. However, as HSC, cultured for 
a few days, undergo depletion of most forms of GST 
[69], in the absence of GST, GSH is unable to 
conjugate the 4-HNE which can act on its cell 
targets and signalling pathways, independently of 
GSH concentration [69]. Altering GSH concentration 
therefore has limited effects on collagen synthesis 
after treatment of activated HSC with 4-HNE [69,70]. 
4-hydroxynonenal and other 4-hydroxyalkenals can 
markedly induce procollagen type I synthesis [68]. 
Induction of the pro-fi brogenic stimulus by 4-HNE 
occurs at low, non-cytotoxic doses like those found 
after acute liver injury induced by CCl 4  (0.5–10 μM) 
[71]; at higher, experimental concentrations, it induces 
apoptosis in cultured rat HSC [72]. Whatever their 
source, the various aldehyde end-products of lipid 
peroxidation are all able to diffuse freely from their 
generation site and interact with targets inside and 
outside the cell, suggesting a close  in vivo  link between 
lipid peroxidation and liver fi brosis. Although the 
expression of most isoforms of GST falls during activa-
tion of HSC [69], stellate cell lines isolated from the 
liver of cirrhotic rats can still degrade HNE through 
aldehyde dehydrogenase activity [73]. Like aldehydic 
lipid peroxidation products, also F 2 -isoprostanes, 
deriving from peroxidation of arachidonic acid, have 
been shown to mediate proliferation and collagen 
hyperproduction in HSC [74]. 

 In HSC, reduced glutathione is recognized as a 
powerful anti-fi brogenic metabolite [75]. The gluta-
thione content of HSC is present in an amount com-
parable to that of other cells of the myofi broblastic 
phenotype [76]. Notably, when plated in primary cul-
ture, HSC progressively increase their glutathione 
content, due to upregulation of γ-glutamyl cysteine 
ligase (γ-GCL) [76], the rate-limiting enzyme in glu-
tathione biosynthesis. Although, during primary cul-
ture, HSC show all the phenotypic changes observed 
during activation [76], culture-induced accumulation 
of glutathione does not occur  in vivo , i.e. in HSC 
isolated from fi brotic organs [76]. This discrepancy 
constitutes an uncommon case in which the pathways 
of HSC activation  in vivo  are different from those in 
culture-induced activation [2,76]. In HSC treated 
with the polyphenol compound curcumin, upregula-
tion of γ-GCL has been observed, concomitant with 
increased GSH concentration, inhibition of cell acti-
vation and αI procollagen synthesis [77]. Similar 
effects were found for epigallocatechin gallate [78], 
which increases the level of both cytoplasmic and 
mitochondrial glutathione by stimulating the expres-
sion of gene coding for the catalytic sub-unit of 
γ-GCL. The increased activity of the latter leads to 
 de novo  synthesis of glutathione [78]. According to the 
same authors [78], EGCG interrupts TGF-β signal-
ling and hence increases γ-GCL. TGF-β signalling is 
mediated by Smad proteins, which can activate or 
repress the expression of specifi c genes [79]. In par-
ticular, phase 2 gene expression is a target for TGF-β 
repression, leading to suppression of the synthesis of 
several enzymes, including superoxide dismutase 1, 
catalase, glutathione transferases (pi2, mu1, alpha4), 
the γ-GCL catalytic sub-unit [79] and glutathione 
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peroxidase [80,81]. Therefore, interruption of this 
inhibitory pathway by EGCG leads to increased 
expression of γ-GCL and thus to enhanced capacity 
of the cell to synthesize glutathione. 

 Glutathione is maintained reduced by glutathione 
reductase in the presence of NADPH (Figure 2), as 
the GSH/GSSG ratio is critical for preserving the 
redox homeostasis of cells. According to De Bleser 
et al. [82], in activated HSC, glutathione levels play a 
role in discriminating whether hydrogen peroxide 
acts as a second messenger in TGF-β1 signalling or 
is the result of oxidative stress. The same authors also 
found an over-expression of catalase, modulating 
hydrogen peroxide internally generated in the TGF-β 
signalling pathway [82]. In contrast, in these cells, 
glutathione peroxidase is specifi cally involved in the 
removal of hydrogen peroxide deriving from extracel-
lular sources [82]. According to Jameel et al. [83] the 
enzymatic activities of superoxide dismutase, catalase 
and glutathione peroxidase are lower in activated 
than in quiescent HSC. In addition, when HSC were 
treated with a controlled fl ux of superoxide gener-
ated by hypoxanthine/xanthine oxidase, they exhib-
ited increased activities of SOD, catalase and GPx 
only in quiescent but not in activated HSC [83]. 

 A cytoplasmic haemoprotein specifi c for HSC has 
been found by means of a proteomic approach. This 
protein, named Cygb/STAP (cytoglobin/stellate cell 
activation-associated protein), is signifi cantly increased 
in HSC and shown to possess peroxidase activity [84] 
and oxygen binding properties [84,85]. In HSC, its 
expression is stimulated by sera, PDGF-BB and 
TGFβ-1 [85].   

 Thioredoxin system 

 The thioredoxin system is a redox transfer pathway 
which plays a crucial role in modulating cell viability 
and proliferation via thiol redox state [65,86,87]. 
This system is composed of NADPH, thioredoxin 
reductase (TrxR) and thioredoxin (Trx). Thioredoxin 
reductase is found in cytosol, nucleus (TrxR1) [88,89] 
and mitochondria (TrxR2) [90,91]. Thioredoxin, 
the major 12-kDa protein substrate of thioredoxin 
reductase, is also present in both cytosol (Trx1) and 
mitochondria (Trx2) and the cytosolic isoform can 
also enter the nucleus. Reduced thioredoxin donates 
electrons to a number of enzymes such as ribonucle-
otide reductase [92], methionine sulphoxide reductase 
[93] and peroxiredoxins [94,95]. Peroxiredoxins play 
a critical role in cell signalling, as they can act either as 
antioxidants by rapidly removing hydrogen peroxide 
[95] or in redox regulation of various signalling mole-
cules by modulating the redox state of thioredoxin. 
Reduced thioredoxin-1, by binding to ASK1, inhibits 
apoptosis, which, however, takes place upon oxidation 
of thioredoxin and its dissociation from ASK1 [96]. 
In alveolar macrophages, it was recently shown that 
production of hydrogen peroxide by stimulated Nox2 
activates ASK1 depending on thioredoxin-1 oxidation 
[97]. The function of several transcription factors 
depends on the redox state of thioredoxin, which 
interacts by means of its redox-sensitive cysteines 
[98–101]. 

 Cells with dendritic and stellate morphology of 
various origins have all been shown to be positive 
for thioredoxin [102], which can be either constitutive 
or inducible. Therefore, thioredoxin appears to be 
critical in the general stress response of these cells. 
Transgenic mice over-expressing thioredoxin showed 
attenuated hepatic fi brosis induced by thioacetamide 
[103]. In addition, in HSC isolated from the same 
transgenic mice, proliferative capacity was lower than 
in the corresponding wild type and supplementation 
of thioredoxin to activated HSC signifi cantly inhib-
ited DNA synthesis upon stimulation with serum 
or PDGF [103]. These results partly explain the 
mechanism of thioredoxin-dependent decrease in 
hepatic fi brosis, which depends on inhibition of HSC 
proliferation [103]. 

 Collagen expression was not inhibited in HSC 
isolated from thioredoxin transgenic mice compared 
with the wild type [103]. However, thioredoxin may 
act by controlling the maturation or degradation of 
collagen fi bres at the post-transcriptional level [103]. 
It has been observed that Trx can exert redox control 
on collagen biosynthesis [104]. The C-propeptide 
region of human pro α1 type I collagen can bind 
wild-type Trx but not mutant Trx, in which the 
cysteine of the redox active site is replaced by a 
serine [104]. Pancreatic fi brosis was also attenuated 
in mice over-expressing Trx-1 and observed to be con-
comitant with suppression of pancreatic stellate cell 
acti vation [105]. Strong enhancement of thioredoxin 
expression was observed in hepatocellular carcinoma, 
whereas it was moderate in chronic hepatitis or cir-
rhosis [106]. Serum Trx levels were also signifi cantly 
increased in patients with hepatocellular carcinoma, 
liver cirrhosis and, especially, non-alcoholic steato-
hepatitis (NASH) [106]. Thioredoxin binding protein 
2 (TBP2) is a negative regulator of the expression and 
functions of thioredoxin. It binds the reduced form 
of Trx [106] and its over-expression results in growth 
suppression [106]. TBP2 is effective not only in cell 
growth regulation, but also in glucose and lipid 
metabolism and, together with thioredoxin, has been 
suggested as a potential marker of liver diseases like 
NASH [106]. 

 In HSC, thioredoxin is maintained reduced by 
thioredoxin reductases, which are active in both 
cytosolic and mitochondrial compartments of HSC 
(unpublished results). Thioredoxin reductase is a 
selenium enzyme which is easily inhibited by a large 
number of compounds, including natural and synthetic 
organic compounds, metals and metal complexes 
[107,108]. As reported above, aldehyde products, 
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essentially deriving from hepatocyte lipid peroxidation, 
play an important role in liver fi brogenesis. Aldehydes 
such as 4-HNE readily react with and inactivate both 
thioredoxin and thioredoxin reductase, provided the 
latter are in their reduced forms [109]. However, 
HSC contain both alcohol and acetaldehyde dehydro-
genase [110,111], which cooperate in removing 
aldehyde products. In addition, gliotoxin, an anti-
fi brogenic and pro-apoptotic agent, interacts with the 
thioredoxin system, displaying thioredoxin-dependent 
hydrogen peroxide-reducing activity [112]. 

 Mitochondrial peroxiredoxin (Prx3) is an acceptor 
of electrons from thioredoxin and contributes toward 
controlling the intracellular balance of hydrogen 
peroxide. Prx3 is completely oxidized after inhibition 
of mitochondrial thioredoxin reductase [113] and 
may be responsible for the permeabilization of the 
outer mitochondrial membranes and the consequent 
release of pro-apoptotic factors. Peroxiredoxin 2 of 
HSC cells was found by proteomic analysis and shown 
to be under-expressed in specifi c conditions, e.g. high 
glucose concentrations [114]. In conclusion, in HSC, 
both glutathione and thioredoxin redox systems are 
active and play important roles in controlling activation 
and fi brogenesis.    

 Apoptosis of hepatic stellate cells: The role of 
mitochondria 

 As resolution of fi brosis largely depends on the 
increased apoptotic death of HSC [115–117], medical 
treatment of hepatic fi brosis can be potentially based 
on selective induction of apoptosis in them [118]. 
Activated HSC can undergo either spontaneous or 
receptor-mediated cell death [119]. In response to 
several stimuli, they can increase expression of Fas 
or TNF-α receptors and their ligands, leading to a 
caspase-8/caspase-3-linked apoptosis. Over-expression 
of pro-apoptotic proteins, such as Bax and p53, 
can also activate the mitochondrial pathways of 
programmed cell death mediated by caspase-9 [119]. 
  Table I. Conditions, compounds and drugs stimulating or preventing

Activation/fi brogenesis Refs

Ethanol, carbon tetrachloride [1–5] 
Viral hepatitis, biliary obstruction [119]
Increase of TIMP-1 [26]
ROS [1–5]
TGF-β, PDGF [1–5]
4-hydroxynonenal (4-HNE) [1–5]
F 2 -isoprostanes [74]

   Apoptosis of activated HSC is important in resolution of hepatic fi br
In addition to oxidative stress and well-known protein factors and d
fl avonoids and other polyphenols, can direct HSC to apoptosis.   
There are therefore many conditions, factors, drugs and 
chemically unrelated compounds that can direct HSC 
toward apoptosis (Table I). There is evidence that 
ROS and RNS can stimulate apoptosis in HSC. 
When treated with systems producing superoxide, 
HSC undergo apoptosis with cytochrome  c  release, 
caspase-3 acti vation, increased Bax expression and 
hydrolysis of PARP (polyADP-ribose polymerase) 
[120]. However, increased expression of the anti-
apoptotic protein Bcl-xL and translocation to the 
nucleus of NF-kB were also observed [120]. Novo 
et al. [121] showed the dose-dependent effects of 
superoxide anion on cell death, as low levels of super-
oxide were able to up-regulate procollagen type 
I expression, whereas a high rate of superoxide gen-
eration caused both apoptotic and necrotic cell death. 
Activated HSC, lacking retinoids, appear particularly 
subject to superoxide-induced apoptosis [83]. Dun-
ning et al. [122] recently showed that ROS inhibit 
proliferation of HSC and, depending on concentra-
tion, promote different modes of cell death. Superox-
ide production was obtained by addition of menadione 
to the cells, which caused a fl ux of endogenous super-
oxide anion by a redox cycling process. RNS are also 
able to promote HSC apoptosis. Nitric oxide (NO) 
can induce apoptosis in HSC by a mechanism involv-
ing mitochondria and ROS [123]. The effects of RNS 
on the fi brogenic response of HSC are reported and 
discussed in a recent review [19]. 

 The role of mitochondria in apoptosis of HSC is 
clearly evident when considering the effects of endo-
cannabinoids [47,124–127]. Endocannabinoids such 
as 2-AG promote the resolution of hepatic fi brosis 
effi ciently by inducing apoptosis in HSC [47]. The 
mechanism involved in 2-AG-induced apoptotic 
cell death depends essentially on enhancement of 
mitochondrial ROS production. Mitochondria are 
therefore a major source of oxidant formation after 
2-AG treatment and mitochondrial components of 
the membrane permeability transition pore complex 
(MPTP), such as adenine nucleotide translocase, 
VDAC and cyclophilin D, very probably act as 
 fi brogenesis.   

Resolution/apoptosis Refs

Serum deprivation, senescence [119]
TNF-a, FasL [132,133]
TIMP-1 inhibition [26]
ROS [47]
Gliotoxin [135]
Endocannabinoids [47,124–127]
Epigallocatechingallate (EGCG) [78]
Resveratrol, taurine [136,138]
Tanshinone I, lefl unomide [139,140]
Sulphasalazine, celecoxib, curcumin [116,141,142]

osis and constitutes an attractive target for pharmacological therapy. 
rugs, several natural secondary plant metabolites, such as terpenes, 
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redox-sensitive targets involved in apoptosis [128,129]. 
Alteration of mitochondrial membrane permeability 
leads to cytochrome  c  release and caspase activation, 
well-known hallmarks of apoptosis. In the same experi-
mental conditions, hepatocytes were also observed to 
be more resistant to 2-AG-induced apoptosis than 
HSC [47] and this behaviour was due to the high 
glutathione content of hepatocytes [127]. Unlike 2-AG, 
the endocannabinoid anandamide mostly induces 
necrosis in HSC [124]. 

 Several studies, e.g. [130,131], report that ROS 
stimulate HSC activation and proliferation instead of 
inducing apoptosis. This apparent contradiction, dis-
cussed by Siegmund et al. [47] was solved on the basis 
that low levels of ROS, mostly produced by NADPH 
oxidase, have a proliferative and activating effect 
whereas high levels of ROS, essentially of mitochon-
drial origin, direct cells to the death pathways. 2-AG 
may act as an endogenous anti-fi brogenic agent, being 
more specifi c [47] than other endogenous mediators 
of cell death such as TNF-α [132] and FasL [133]. 

 A specifi c apoptotic effect on HSC was obtained 
with the fungal metabolite gliotoxin, conjugated 
with mannose-6-phosphate-modifi ed serum albumin, 
which can selectively accumulate in liver fi brogenic 
cells and reduce their number [134]. Previous works 
have shown that gliotoxin has anti-fi brogenic proper-
ties  in vivo  and acts as a potent pro-apoptotic agent 
in HSC [117,135]. 

 Flavonoids such as epigallocatechin gallate (EGCG) 
can direct HSC to apoptosis by increasing levels of 
the pro-apoptotic protein Bax and decreasing anti-
apoptotic Bcl-2 [78]. EGCG also reduces the level of 
cyclin D1 and enhances the quantities of two proteins 
(p21 (WAF1/Cip1)  and p27 (Kip1) ) which act as inhibitors 
in regulating cell cycle progression [78]. 

 Resveratrol (3,5,4′-trihydroxy-trans-stilbene), found 
in a variety of plants, is well-known to induce apoptosis 
in several types of cells [136]. At concentrations similar 
to those estimated in biological fl uids of subjects with 
diets rich in food containing polyphenols, resveratrol 
causes cell cycle arrest and apoptosis of HSC, observed 
as an increase in the cell fraction with sub-diploid DNA 
content and from the direct inspection of nuclear mor-
phology [136]. However, resveratrol has also been shown 
to amplify the pro-fi brogenic effect of fatty acids by 
up-regulating several genes, including the anti-apoptotic 
protein Bcl-2 [137]. Other compounds inducing apop-
tosis in HSC are taurine [138], tanshinone I, a diter-
pene quinone [139], lefl unomide [140], sulphasalazine 
[116], celecoxib [141] and curcumin [142]. Lastly, 
inhibition of heat shock protein 90 [143], activated NK 
cells [144] and interferon α [145] can also induce the 
death of HSC. In addition, the number of drugs and 
chemicals reported to be able to stimulate apopotosis of 
HSC is rapidly increasing (for a selection see Table I). 
Many of these compounds may represent novel thera-
peutic approaches in treating hepatic fi brosis.   
 NADPH oxidase of hepatic stellate cells and 
related signalling pathways involving protein 
kinases and redox regulation 

 NADPH oxidase represents a well-controlled source of 
ROS, playing a critical role in signalling processes 
involved in the modulation of fi brogenesis (Figure 3). 
NADPH oxidase is a multi-enzyme complex producing 
superoxide via the one electron-reduction of oxygen by 
NADPH. In phagocytic cells, this complex contributes 
to host defence, whereas, in non-phagocytic ones, it acts 
as a regulator in intracellular signalling [146–148]. In 
neutrophil granulocytes, NADPH oxidase consists of 
two trans-membrane proteins, the catalytic sub-unit 
gp91phox (Nox2) and the regulatory sub-unit p22phox, 
together forming cytochrome b558 [149]. In addition, 
four regulatory proteins (p47phox, p67phox, p40phox 
and the Rac1/2 GTPase) are located in the cytosol of 
resting cells [150]. Following stimulation, the cytosolic 
components are rapidly recruited to the plasma mem-
brane, where they assemble with fl avocytochrome b558 
to form the active enzyme in a highly regulated process 
consisting of a sequence of events involving phosphoryla-
tion, GTPase activation and protein–protein interactions 
[146,151]. In particular, the mechanism of recruitment 
involves multiple SH3-domain interactions, coupled 
with the interaction of   phox homology domains with 
phosphoinositides [147,152]. However, the signalling 
pathways leading to activation of the enzyme complex 
in phagocytic and non-phagocytic cells are still not 
completely elucidated and several lines of evidence 
suggest a role played by protein kinases/phosphatases 
and phospholipases in the post-translational modifi ca-
tions of the various components. 

 A functionally active form of NADPH is expressed 
in HSC and has been reported to be a critical media-
tor of liver fi brogenesis [130,153]. In this type of cells, 
fi brogenic factors, such as angiotensin II [130], PDGF 
[154], leptin [155,156] and apoptotic bodies [157] 
activate NADPH oxidase to produce ROS which stim-
ulate several intracellular signalling pathways includ-
ing MAP kinases and phopshatidylinositide 3-kinase. 
For instance, PDGF potently induces proliferation of 
HSC mediated by NADPH oxidase-dependent pro-
duction of ROS which, in turn, stimulate the phos-
phorylation of p38 MAP kinase [154]. HSC prepared 
from p47phox-defi cient mice and incubated with 
leptin do not induce ROS production, in contrast to 
wild-type HSC which, in the same conditions, give 
rise to a marked formation of ROS [156]. Similarly, 
leptin stimulates proliferation of wild-type HSC, while 
the proliferation of p47phox- / - HSC is considerably 
lower [156]. Also, treatment with specifi c inhibitors of 
NADPH oxidase such as apocynin or diphenylene 
iodonium (DPI) decreases HSC proliferation mediated 
by fi brogenic factors [156]. In addition, in HSC stim-
ulated with leptin, both pharmacological treatment 
with specifi c inhibitors or genetic inhibition of NADPH 
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oxidase are able to reduce the production of markers 
of fi brogenesis, such as collagen α1(I) and α-smooth 
muscle actin [156]. Furthermore, mice lacking p47 
phox oxidase do not develop liver fi brosis after bile 
duct ligation [130]. 

 Some specifi c characteristics differentiate the role 
played by NADPH oxidase in non-phagocytic and 
phagocytic cells. For instance, non-phagocytic NADPH 
oxidase is constitutively active and consequently pro-
duces relatively low levels of ROS; moreover, in 
response to various stimuli, it generates high levels of 
oxidants. However, in non-phagocytic cells, the exact 
features of the components of this complex and their 
interactions are not completely known [158]. 

 Several human homologues of gp91phox (Nox2), 
encoded by distinct genes, have been identifi ed in 
non-phagocytic cells. These include Nox1 and Nox3–5 
as well as Dual oxidase (Duox) 1 and 2 [146,158]. 
The expression of these proteins depends on the cell 
and tissue types, functions and on sub-cellular distri-
bution [159]. In HSC, the quiescent state is associated 
with a strong expression of Duox, whereas other Nox 
need induction to become activated [160]. 

 Homologues of the cytoplasmatic components 
p47phox and p67phox, named NoxO1and NoxA1, 
respectively, were also found [153]. A relevant differ-
ence between p47phox and NoxO1 is the lack of the 
C-terminal domain in the latter. Therefore, NoxO1 
and p47phox affect oxidase activity in a different man-
ner [161]. In p47phox, the C-terminal domain is 
regulated by phosphorylation in response to different 
stimuli. Serine phosphorylation of p47phox [162] 
seems to be an important post-translational modifi ca-
tion regulating the assembly, translocation and activa-
tion of NADPH oxidase. Phosphorylation of p47phox 
makes the phox homology domain capable of binding 
phosphatidylinositol 3,4-bisphosphate and phospha-
tidic acid [163]. This binding contributes to the aggre-
gation of the NADPH oxidase complex and is critical 
for its localization to the membrane. Notably, p47phox, 
poorly expressed in quiescent HSC, is highly expressed 
in activated HSC in culture or in cells obtained from 
patients with liver fi brosis [153,164]. Besides, angio-
tensin II was shown to stimulate the phosphorylation 
of p47phox in activated HSC [164]. 

 In non-phagocytic cells, the activation of NADPH 
oxidase has recently been shown to be regulated by 
tyrosine phosphorylation of p47phox mediated by 
c-Src, a member of the Src family kinases (SFKs) 
[165,166]. These fi ndings are also confi rmed by the 
observation that specifi c SFK inhibitors such as PP2 
(4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo 
[3,4-d]pyrimidine), after stimulation of HSC by 
PDGF, prevent the translocation of p47phox to the 
plasma membrane, with a signifi cant decrease of ROS 
production (unpublished data). c-Src can also indi-
rectly support the function of the NADPH oxidase 
complex by association to cortactin which acts as a 
scaffold protein to link the components of NADPH 
oxidase with the actin cytoskeleton [167]. 

 There is increasing evidence that c-Src activity is 
controlled not only by phosphorylation but also by a 
redox regulatory process [168–172]. c-Src tyrosine 
kinase has been shown to be activated after oxidation, 
Figure 3. Proposed model depicting effects of growth factor interactions with cells and consequences on signalling pathways, depending 
on kinases and redox-regulated processes. A variety of growth factors interact with membrane tyrosine kinases receptors which, in turn, 
phosphorylate and activate several signalling molecules including PKC and SFK. Activated kinases phosphorylate cytosolic components 
of NADPH oxidase such as p47phox, which assemble with membrane components of enzyme. Active NADPH oxidase generates superoxide, 
which dismutates to hydrogen peroxide. H2O2 modulates a large number of signalling pathways.
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leading to disulphide bond formation between Cys245 
and Cys487, as apparent from the insensitivity of 
mutants to oxidation [169]. Interestingly, heavy met-
als such as mercury ions, that are well-known to react 
preferentially with thiol residues in proteins, markedly 
enhance the activity of c-Src [172], again indicating 
that thiol alterations infl uence functioning of these 
proteins. However, the cysteines involved in mercury 
ion activation are different from those previously 
reported to be involved in disulphide bond formation 
[169]. As a result, in addition to the known phospho-
rylation/dephosphorylation cycle regulating the acti-
vation state of c-Src [173–175], several evidences 
underline the role of redox regulation [169,170]. A 
redox circuit has been proposed and involves c-Src 
kinase-dependent activation of NADPH oxidase. In 
turn, the latter, through hydrogen peroxide production, 
promotes the complete activation of c-Src. Fully 
active c-Src acts as a mediator in transmitting the 
downstream signalling dependent on ROS [165]. 

 A further component needed for activation of 
NADPH oxidase is Rac GTPase, in particular Rac1 
in HSC [153]. Rac belongs to the Rho family of small 
GTPase proteins, involved in the regulation of several 
cell functions and acting as molecular switches able 
to cycle between GDP-bound inactive and GTP-
bound active forms which stimulate downstream 
effectors [176]. The Rac active form is adopted after 
interaction with GDP/GTP exchange factors (GEFs). 
The latter includes a variety of molecules such as 
Vav1/2 [176] which, in order to be activated, needs 
to bind inositides such as phosphatidylinositol 3,4 
and 3,4,5-trisphosphate. In this process, a critical role 
is exerted by phosphatidylinositol 3-kinase which, by 
producing phosphoinositides, acts as an important 
participant upstream of NADPH oxidase activation. 
The role of phosphatidylinositol 3-kinase has also 
been studied in HSC upon PDGF stimulation [154]. 
Transgenic mice over-expressing Rac1 are a good 
model to show the role played by this component of 
NADPH oxidase in mediating liver injury [177]. In 
fact, Rac-transgenic mice treated with carbon tetra-
chloride (CCl 4 ) were characterized by a large number 
of activated HSC. In addition, they showed a more 
severe liver damage and a more sustained hepatocyte 
apoptosis, liver fi brosis and mortality in comparison 
to CCl 4 -treated wild-type animals [177]. 

 c-Src-mediated generation of ROS by NADPH 
oxidase is also regulated by tyrosine phosphorylation 
of GEFs. In HT29 human colonic adenocarcinoma 
cells, tyrosine phosphorylation of nucleotide exchange 
factor Vav2 is abolished in cells treated with PP2 
[168], a selective inhibitor of c-Src, already described. 
Furthermore, Vav2-specifi c siRNA also blocks Src-
mediated ROS generation [168]. The data reported 
highlight the prominent role of SFKs in connecting 
the signalling pathways, triggered by specifi c agonists, 
to the activation of NADPH oxidase. 

 On the whole, it is clearly apparent that the fi nely 
regulated NADPH oxidase complex plays an essential 
role in controlling the fi brogenic signalling pathways 
of HSCs. In addition, NADPH oxidase may be an 
attractive target of selective drugs to be used in the 
anti-fi brotic therapy for liver diseases.   

 Conclusions 

 HSC are multiform ‘protean’ cells [2], in which the 
pathophysiology of oxidative stress, redox signalling 
  Figure 4.     Redox biology of hepatic stellate cells. HSC are challenged by oxidants from exogenous and endogenous sources. Hydrogen 
peroxide is the most important signalling compound, with concentration controlled by glutathione and thioredoxin systems through their 
respective peroxidases. H 2 O 2  acts on several targets in cells, eliciting, according to conditions, apoptosis or proliferation/fi brogenesis.  
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and the various pathways depending on the kinase/
phosphatase system are closely intertwined. Oxidative 
stress is intimately involved in the stimulation of 
HSC, as shown by the effects of ROS/RNS and lipid 
peroxidation products which, in addition to cytokines 
and growth factors, alter the intracellular redox 
conditions of HSC resulting in excessive ECM 
deposition. A decisive role in the control of redox 
signalling pathways is played by the glutathione and 
thioredoxin systems which, in many instances, can 
link redox processes to the kinase pathways. Intracel-
lular signalling pathways, involving kinases such as 
MAP kinases, PI 3-K and PKC, are also activated by 
ROS and cytokines in a process in which NADPH 
oxidase plays a critical role. 

 The most signifi cant features of the redox biology 
of HSC are shown in Figure 4. It is apparent that 
several exogenous or endogenous sources give rise 
to an increase in ROS, mostly hydrogen peroxide, 
which is strictly controlled by the thiol-dependent 
redox systems linked to glutathione or thioredoxin. 
Hydrogen peroxide can act on several intracellular 
targets eliciting effects which, depending on condi-
tions, give rise either to apoptosis or cell proliferation 
and fi brogenesis. 

 As hepatic fi brosis is the result of several chronic 
liver diseases and essentially depends on HSC activa-
tion, one research challenge is the development of 
pharmacological therapies able to reverse this pro-
cess. The induction of apoptosis, in which mito-
chondria play a fundamental role, is being actively 
studied. Several natural substances, such as terpenes, 
fl avonoids and other polyphenols with recognized 
anti-fi brotic properties may constitute a potential 
nutritional approach which, in addition to well-estab-
lished pharmacological therapies, may contrast the 
progression of fi brosis in the liver.   

 Declaration of interest: The authors report no 
 confl icts of interest. The authors alone are responsible 
for the content and writing of the paper. 
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